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This paper deals with a system of equations which includes as special cases 
the equations governing such hydrodynamic stability problems as the Taylor 
problem, the BBnard problem, and the stability of plane parallel flow. A non- 
linear analysis is made of disturbances to a basic flow. The basic flow depends on 
a single co-ordinate 7. The disturbances that are considered are represented as a 
superposition of many functions each of which is periodic in a co-ordinate 5 
normal to 7 and is independent of the third co-ordinate direction. The paper 
considers problems in which the disturbance energy is initially concentrated in a 
denumerable seti of ' most dangerous' modes whose wave-numbers are close to 
the critical wave-number selected by linear stability theory. It is a major result 
of the analysis that this concentration persists as time passes. Because of this 
the problem can be reduced to the study of a single non-linear partial differential 
equation for a special Fourier transform of the modal amplitudes. It is a striking 
feature of the present work that the study of a wide class of problems reduces to 
the study of this single fundamental equation which does not essentially depend 
on the specific forms ofthe operators in the original system of governing equations. 
Certain general conclusions are drawn from this equation, for example for some 
problems there exist multi-modal steady solutions which are a combination of a 
number of modes with different spatial periods. (Whether any such solutions 
are stable remains an open question.) It is also shown in other circumstances 
that there are solutions (at least for some interval of time) which are non-linear 
travelling waves whose kinematic behaviour can be clarified by the concept of 
group speed. 

1. Introduction 
We begin this introductory section with a brief exposition, in general terms, of 

the class of problems under consideration and mention some of the results we 
have achieved. We then discuss more fully the issues with which we are concerned 
We conclude the introduction with an outline of the rest of the paper. 

45 F L M  49 



706 R.  C .  DiPrima, W .  Eckhaus and L. A .  Segel 

As exemplified in the Taylor and BBnard problems (see below) the instability 
of certain simple flows is followed by the appearance of new equilibrium flows 
which seem to be spatially periodic. This paper is a study of non-linear inter- 
actions which include, as an important special case, those which lead to such 
equilibrium flows. The analysis deals with situations wherein the dependent 
variables (e.g. three velocity components, pressure, density) are functions of two 
spatial variables and the time. When functions have this type of spatial depen- 
dence they will be referred to as two-dimensional. 

Previous studies by various workers (see references below) have dealt with the 
growth of a two-dimensional infinitesimal disturbance which is periodic in one 
spatial co-ordinate with wave-number k, the generation of the harmonics (wave- 
numbers 2k, 3k, . . .) of the fundamental mode of this disturbance, the resulting 
change in the mean motion (zero wave-number), and the equilibration process by 
which the amplitudes of the fundamental and its harmonics reach final values 
(which may be steady or may be periodic in time). Further studies have dealt with 
the stability of these spatially periodic flows to small two-dimensional perturba- 
tions and have shown that certain classes of such flows are stable. Three-dimen- 
sional problems have also been treated by various authors but such problems will 
not be considered here. 

The stability analyses just mentioned may be regarded as demonstrations that 
if a certain spatially periodic fundamental mode and its harmonics appear domi- 
nantly in the initial disturbance then they will appear exclusively in the final state. 
The present paper treats multi-modal initial conditions in which a combination 
of any or all of the ‘most dangerous modes’ is dominant.? We show that no new 
modes become dominant as time passes, so that the energy spectrum remains 
concentrated near the critical wave-number. As a consequence of this permanence 
of energy concentration the study of interactions of modes of different wave- 
numbers can, for a large class of problems, be reduced to the study of a certain 
particular partial differential equation. This equation contains only two para- 
meters, the growth rate of linear theory and the Landau constant of the simplest 
non-linear theory. 

Several general conclusions can be drawn for this class of problems. For 
example, in the Taylor and BBnard problems non-linear effects are known to be 
stabilizing in the sense that they bring to equilibrium spatially periodic distur- 
bances (fundamental plus harmonics) which grow exponentially according to 
linear stability theory; we show that the non-linear effects remain stabilizing 
even for the multi-modal flows which result when all the most dangerous modes are 
allowed to interact. Another general conclusion concerns the effect of non-lineari- 
ties when linear stability theory predicts that neutral spatially periodic distur- 
bances take the form of travelling waves. We show in this case tha t  if non- 
linear terms are stabilizing then, for a considerable time span at least, one can 
anticipate that small linearly unstable perturbations will tend to form a spatially 
periodic wave train, modulated by an envelope travelling at the ‘critical’ group 
speed. 

t ‘Most dangerous modes’ are periodic disturbances which grow, or decay very slowly, 
according to  linear theory. A precise definition will be given later. 
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The calculations in this paper deal with flows (or other physical phenomena) 
which are governed by equations which will be discussed in $2.  At this point, 
rather than attempting to characterize precisely the class of mathematical prob- 
lems t o  which our analysis applies, we prefer to list three fluid-mechanical prob- 
lems each of which is a special case of the general problem we shall discuss. 

Consider, then, the following three prototypical fluid instability phenomena: 
( a )  Flow between a long stationary outer cylinder and a concentric rotating inner 
cylinder takes place along circular streamlines (Couette flow) if a suitable 
dimensionless measure of the inner rotation speed (the Taylor number) is 
small enough. But Taylor vortices spaced periodically in the axial direction 
appear when the Taylor number exceeds a critical value. (b )  A horizontal layer 
of fluid heated from below remains quiescent if a dimensionless imposed tempera- 
ture gradient (the Rayleigh number) remains small enough, but convects in 
spatially periodic BBnard cells if the Rayleigh number exceeds a critical value. 
( c )  Fluid forced by a pressure gradient to move between parallel planes takes up 
the parabolic velocity profile of plane Poiseuille flow if its dimensionless maximum 
speed (a Reynolds number) is small enough, but amplified disturbances which are 
periodic in the downstream direction (Tollmien-Schlichting waves) develop if 
the Reynolds number exceeds a critical value. 

Each of these problems permits a basic solution (denoted here by 9,) to its 
governing equations which depends on a single co-ordinate 7, where 7 measures 
distance normal to the bounding surfaces. In  each problem it can be shown that 
in studying the onset of instability it is sufficient to restrict consideration to a 
perturbation which depends on only one of the co-ordinate directionsnormal to 7. 
The corresponding co-ordinate will be denoted by [; [ is the axial co-ordinate in 
the Taylor problem (a), any horizontal co-ordinate in the BBnard problem (b) ,  and 
the downstream co-ordinate in the plane Poiseuille problem ( c ) .  

Stability theory is the study of perturbations 9’) where = 9,fQ’. In  
linear theory, only terms linear in 9’ are retained. In  treating initial values of Q, 
which are periodic in 6 with wave-number k ,  normal mode solutions of the form 

(1 .1)  a’([, 7, t )  = sgSk)(7) exp [ - ik  [ --,dk) (R)  t ]  

are assumed. (The small parameter e, defined in (1.5), is inserted here to obtain 
conformity with later notation.) The governing equations for the +(k) involve a 
pammeter R: the Taylor, Rayleigh and Reynolds numbers in problems (a) ,  
( b )  and ( c )  respectively. These equations (and boundary conditions) are linear 
and homogeneous, and form an eigenvalue problem for the ,dk). We assume that 
there exists a denumerably infinite set of eigenvalues ,u$)(R) and corresponding 
eigenfuactions tp:) such that the eigenvalues can be ordered: 

Re,@, m = 0,1, .... 

For each k ,  the critical value of R, R,(k), is defined by 

~ ( , ~ ) [ R , ( k ) l  = 0,  where 7hk’ = Rephk). (1.2) 

The neutral curve is given by R = B,(k). On it 7hk)(R) = 0. In  the problems under 

45-2 



708 R.  C .  DiPrima, W .  Eckhaus and L. A .  Xegel 

consideration there exists a minimum value of R,(k), R,, and a corresponding 
critical wave-number k, with the following properties. 

( 1 . 3 )  1 
For R < R,: rhk) > 0. 

For R = R,: 7hk) > 0 when k + k,; 7gkc)  = 0. 

7hk) > 0 when k < k,(R), k > k,(R); 
For R > R,: 1 7ik) < 0 when k,(R) < k < k,(R). 

(This is depicted in figure 1 (a) . )  Thus linear theory predicts instability of the 
basic flow when R exceeds R,. For a given value of R > R,, all modes with wave- 
numbers between k, and k, are predicted to grow exponentially in time. 

The first step in developing a non-linear stability theory (Stuart 1960; Watson 
1960) is to consider the modification of the exponential growth of a single periodic 
disturbance having wave-number k. Solutions can be found of the form 

W ( C ,  7, t )  = d h k ) ( t )  #kk)(7) e-ikc + conjugate + higher-order harmonics, (1.4) 

is a small parameter. It is not difficult to show by expanding 7hk) about R,(k) that 
for any fixed k 

IR-R,(k)l = O[e2(k,R)]. (1 .6a)  

In particular for k = kc we have 

IR-R,I = O[e2(kc, R ) ]  = O(s2,). (1.6b) 

Stuart and Watson have shown that thefunction Abk)(t), whichgives the ampli- 
tude of the fundamental mode of the disturbance with spatial wave-number k, 
satisfies 

~ ? l A & ~ ) I z / d t  + 27&k)IA(k)]2 0 = - 21 7kk)1 Rep(k)lAbk)12 + higher-order terms, (1.7) 

where the Landau constant /3(k) is determined by a solvability condition. (Also 
see Eckhaus 1965, chapter 7.) 

If Rep@) < 0 as is the case in the Taylor and BBnard problems (Davey 1962; 
DiPrima 1967 ; Segel 1962), then a periodic two-dimensional equilibrium flow 
of wave-number k exists under super-critical conditions [where R > R,(k)] for 
each k E (k,, k,). This flow will be stable to two-dimensional infinitesimal per- 
turbations of other wave-numbers if and only if its wave-number lies in a 
subinterval (k;, kz) as depicted in figure l ( 6 )  (Eckhaus 1965; Kogelman & 
DiPrima 1970). 

If ReP(k) > 0, as appears to be the case for some values of k in plane Poiseuille 
flow (Reynolds & Potter 1967; Pekeris & Shkoller 1967) then it can be seen that 
sufficiently large periodic perturbations to the basic flow will magnify even 
though small disturbances decay. 

The above discussion has been concerned with an initial disturbance composed 
of a fundamental mode with wave-number k and its harmonics of smaller order in 
magnitude. Now suppose that we have an initial perturbation composed princi- 
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pally of a denumerable set of modes with wave-numbers k + nAk within O(E,) 
of k, and Fourier coefficients @(k+nAk)(q, t ) ,  n = 0,  & 1, f 2, .... There will also 
be harmonics of smaller magnitude. 

What then? For a single mode the non-linear terms are stabilizing in the Taylor 
and BBnard problems, but do they remain so when relatively strong interactions 
between modes are possible? Are there any solutions involving a combination of 
wave-numbers? If so, are they stable? The answers to such questions are not 

R 

li 
R R 

I I 

k 

FIGURE 1. Previously known information about spatially periodic perturbations to a basic 
flow. (a)  Results of linear theory. The parameter R characterizes the basic flow, k is the 
wave-number of the perturbation, and pr ’ (R)  is the growth rate according to linear theory. 
The neutral curve separates points (k, R) corresponding to exponentially growing per- 
turbations [Re p!jk’(R) < 01 from points corresponding to exponentially decaying per- 
turbations [Rep!jk’(R) > 01. Growth or decay may occur in an oscillatory fashion. ( b )  
Results of non-linear theory. Suppose that R - R, is small. If the real part of the Landau 
constant BE (see text) is positive, spatially periodic perturbations corresponding to points 
(k, R )  above the neutral curve lead to  new supercritical equilibrium flows. The require- 
ment that these flows be stable to two-dimensional perturbations (see text for exact 
definition) restricts the corresponding points (k, R) to the shaded region. 

easy t;o determine since they require a study of closely coupled interactions 
governed by non-linear partial differential equations. In  this paper we shall show 
that for a large class of problems these questions can be answered by studying 
one specific system of non-linear ordinary differential equations for amplitude 
functions A,( t )  where 

@(k+nAk)(q, t )  = eA,(t) +hk+nAk)(q) + higher-order terms. 

More advantageously, we shall show that one can study a single non-linear 
partial differential equation for a special Fourier transform of the An’s. 

A difficulty which had to  be overcome is this. Suppose, for example, that the 
initial perturbation consists solely on two modes with wave-numbers kc and 
k, +- Ak, say, such that k, < k, < k, + hi2 < k, and such that each mode is initially 
of magnitude O(E,). The first non-linear interaction of these modes produces 
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harmonics with wave-numbers 0, Ak, Zk,, 2k,+Ak,  2kc+2Ak, each of whose 
magnitude is O(eE) Next, the interaction of the forced mode (Zk,) of magnitude 
O(et) with the fundamental (kc + Ah) of magnitude O(e,) would produce a mode 
with wave-number k, - Ak and magnitude O ( E ~ ) .  Now, and this is of primary 
interest, if Ak = O ( g )  or smaller, the wave-number k, - Ak is close enough to k, so 
that the corresponding mode would ‘have a life of its own’ and as a consequence 
would grow rapidly. This means that the amplitude equations must involve 
A-,(t) (even though the corresponding mode was initially absent) in order that the 
appropriate solvability condition be satisfied. (For this reason the two-mode 
interaction calculations of Segel(l962) are suggestive at  best.) If the initial state 
consists solely of modes proportional to k,, kc+ Ak and k,- Ak then the same 
reasoning shows that modes of wave-number k, + 2Ak and kc - 2Ak will rapidly 
appear, etc. Thus, as soon as two or more modes with near-critical wave-numbers 
are initially present at comparable magnitudes, energy spreads rapidly to 
adjacent modes. At first sight this seems to negate the possibility of a study of 
wave-number interaction short of a simultaneous consideration of all wave- 
numbers differing from k, by some multiple of Ak. However, by a fairly delicate 
sequence of order of magnitude estimates, we shall show that if energy is initially 
concentrated in Fourier components with wave-numbers k where Ik - kcl = O(e,), 
then spreading will not continue beyond this neighbourhood. 

As mentioned earlier our detailed calculations are carried out for a system of 
governing equations which has considerable generality. For this reason the 
calculations apply not only t o  all three hydrodynamic instability problems men- 
tioned above, but in addition, they apply with little or no modification to a 
number of other hydrodynamic stability problems and to stability problems in 
different physical contexts. Examples of the last category are the formation of 
uneven solute distribution patterns in the freezing of metallic alloys (Wollkind 
& Segel 1970) and the formation of Abrikosov mixed states in superconducting 
materials exposed to a magnetic field, once the correct time-dependent version of 
the Ginzburg-Landau equations is formulated (Odeh 1968). 

Prom a mathematical point of view, bhis paper is a step in the study of systems 
of non-linear partial differential equations in the vicinity of a bifuroation point. 
Most of the rigorous work in this area deals with establishment of sufficient con- 
ditions for the existence of a bifurcation point for time-independent equations, 
and the elucidation of the steady solutions which exist when the governing 
parameter exceeds the critical value at  which bifurcation sets in. Considerable 
formal work has dealt with the problem of associating sets of possible initial 
conditions with the steady solution to which they tend as time increases. 
For an introduction to the literature see the survey by Gortler & Velte (1967), 
the collection of papers edited by Keller & Antman (1968), and the conference 
proceedings edited by Liepholz (1971). The last-mentioned reference contains 
Eckhaus (1970), a paper that briefly summarizes a portion of the present analysis 
in a discussion of recent developments concerning the stability of periodic flows. 

We turn in the next section to a specification of the class of problems which 
we shall consider. In  order to establish notation and to lay the foundation for 
succeeding generalizations it is necessary to recapitulate the results of linear 
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stability theory and of the non-linear stability theory which describes the 
behaviour of a periodic perturbation. 

In  $ 3 we formulate the problem of the interaction of a large number of initially 
comparable modes with wave-numbers near k,, and we outline the extensive 
calculations which reduce the problem to the non-linear system of ordinary 
differential equations (3.1 1). 

In  $ 4  we present an order of magnitude analysis which shows that if solutions 
to (3.11) are bounded then it is consistent to assume, as we have, that modes of 
wave-number k have relatively small magnitudes unless k is close to kc. 

In  $5 we complete the consistency argument by proving that the solutions of 
(3.11) are indeed bounded. We derive a single partial differential equation for a 
special Fourier transform of the modal amplitudes A,. The cases of real growth 
rate and complex-valued growth rate are treated separately. In either case the 
disturbance can be expressed directly in terms of the appropriate transform 
functions. Conclusions are drawn from the form of this function. 

Note. Those readers who are interested only in the main results of this analysis 
can skim the formulation of the problem in $52 and 3 and then skip directly to 
$5, which starts with a brief r6sumG of the analysis. 

2. Formulation of the problem and recapitulation of known results 
We consider a general class of problems of the form 

where Q, is a real-valued vector (Ql, Q2, . . . , an) defined on a domain 

D = {(6,7,t)] -03 < 6 < a 7  0 6 7 < 1, t 2 o}, 
and 7 are spatial variables, and t is the time. Here L, S, PO, Q(l) are real linear n x n 

matrix partial differential operators, and KO is a real linear n x 1 matrix partial 
differential operator. All operators are assumed to be independent of time and 
invariant with respect to  translation in 6. The n x n matrix operator (PO&. K(0) 
is defined asfollows. Letpg] be theelements of PO, and ki2) the components of K(o. 

m 

Then the vector 0 0  = P@O has components Oiz) = xp$]@,, and (P(W.K(g) is 

the matrix with components 0i1)kY). 
Boundary conditions on a? are imposed at 7 = 0 and 7 = 1. They are linear, 

independent oft, and invariant with respect to $. It is understood that all vari- 
ables have been made appropriately dimensionless. 

It is assumed that the boundary-value problem consisting of (2.1) and the 
specified boundary conditions has a solution * = Oo(7). We term this solution 
the basic flow. The stability of the basic flow is investigated by superimposing a 
distance a?’(& 7, t ) .  Setting Q, = 9, +0’ in (2.1) we obtain 

i=l  
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2 R o ’  = La’ + [ ( P W o  .KO) & ( O W  + (PW‘ .KO) &0Ro0] ( 2 . 3 )  

is a real linear n x n matrix partial differential operator with the same properties 
as L. Also 2 will depend on the parameter R. The boundary conditions for Ro‘ at 
7 = 0 and 7 = 1 are now homogeneous. 

The problem consisting of the differential equation (2 .2 ) ,  the homogeneous 
boundary conditions, and appropriate initial conditions has been discussed in 
some detail by Eckhaus (1965) for the case of a scalar function; and that work has 
been generalized to the present problem by Kogelman & DiPrima (1970). These 
authors have considered (a )  the linear stability problem; ( b )  the non-linear super- 
critical equilibrium solution or subcritical instability of a disturbance which is 
periodic in 6 with period 27rlk; and ( c )  the linear stability theory of supercritical 
equilibrium states. In  order to establish notation and to lay the foundation for 
succeeding generalizations it is necessary to recapitulate the results of these 
considerations. 

Consider first the linear problem, in which the terms on the right-hand side of 
(2 .2 )  are neglected. As has been mentioned, there are solutions of the form 

a’(& 7, t )  = E + ( ~ )  (7) exp [ - ikE -pW], (2 .4 )  

where k is a non-negative real number, E = s(k,  R) is a parameter and in general 
p(k)  is complex. Substitution into (2 .2 )  with the terms on the right-hand side 
neglected gives 

( 2 k  +p(k)S,) r p )  = 0, (2.5) 

where the definitions o f z k  and sk am clear. For a given value of k ,  (2.5) together 
with the homogeneous boundary conditions, defines an eigenvalue problem for 
p ( k )  in which R appears (throughZk) as a parameter. In general the eigenvalue 
problem will be non-selfadjoint. We shall assume that there exists a denumerable 
infinity of eigenvalues ,!A$), with no cluster point in the finite plane, which can be 
ordered for each value of k so that 

(2.6) r,+l (k) 2 rg), where 3-g) = Rep$). 

The corresponding eigenvectors &)(7), some of which may be generalized eigen- 
vectors, are assumed to be complete in a certain Hilbert space H ,  and to satisfy 
the biorthogonality condition 

with the adjoint eigenvectors +?) of the adjoint eigenvalue problem 

and the adjoint boundary conditions. Here (,) is the naturally occurring inner 
product; see, for example, Kogelman & DiPrima (1970). 

DiPrima & Habetler (1969) have given sufficient conditions, which are satisfied 
by each of the specific problems mentioned earlier, for the above properties of 
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the eigenvalues and eigenfunctions to hold. In  the class of problems they con- 
sidered, the operator s, was positive definite, the Hilbert space H, was the com- 
pletion of the pre-Hilbert space with domain equal to that of s, and inner 
product [$J(,), +(,)I = ($J(,), 8, +(,)), if $J(,) and +(k) are in the domain of sk. Further, 

could be written as the sum of an operator which is positive and bounded 
below and an operator B, such that Sil B, is bounded in H,. 

As mentioned in ij 1 we assume that the lowest eigenvalue pik) is simple, and 
that the neutral curve R = R,(k) defined by 7ik)(R) = 0 has a minimum R, cor- 
responding to k,. See figure 1 ( a ) .  

The full solution of the linear stability problem for a disturbance which is 
periodic with period 27rlk is 

(2.8a) 

(Here, as in the remainder of the paper, it is understood that a,, for n negative 
is the complex conjugate of a,, for n positive.) The constants eAgk) are deter- 
mined by the initial values, Wff lk ) (~ ,  0)) which must lie in H,. Thus the Hilbert 
space H, determines the class of admissible disturbances, and the completeness 
of the eigenvectors allows the expansion (2.8 b)  . 

Next, let us consider solutions of the non-linear problem which have spatial 
period 2nlk. We assume that R is near R,(k) so that the parameter 

which we introduced in (1 3)) is small. For definiteness it is helpful to fix attention 
on the slightly supercritical case where R and k are such that (for positive integers 
n andp) 7gk)(R) > 0 except whenp = 0, n = 1 ; 7bk)(R) < 0. In  this case, according 
to linear theory only the fundamental grows in time while all its harmonics are 
predicted to decay. The analysis is also valid in the slightly subcritical case when 
R < R,(k) and e2 is small, where all modes decay according to linear theory, but 
the fundamental decays very slowly. 

To construct a formal asymptotic solution of the governing non-linear equa- 
tions for a disturbance that is periodic in 6 with period 27r/k, by an expansion in 
terms of E ,  we substitute the series (2 .8 )  for 9' into (2.2). In the f i s t  step of the 
analysis an infinite set of coupled non-linear partial differential equations for the 
a,, is obtained. The second step is to scale thecPnk to reflect the fact that if 7ik) < 0 
then the fundamental 9, can grow freely according to linear theory, while all of 
the harmonics (Pnk, n + 1,  continue to exist only in so far as they are forced by 
the growth of the fundamental. It turns out that the appropriate scaling is 

With this scaling it can be shown that to O(e2) the equations for Yo and Yzk 
reduce to linear partial differential equations whose respective non-homogeneous 
terms are quadratic in v k .  Further, 'Y, satisfies an equation of the form 

G(k, R )  = IT&~)(R)I, 

9 , k  = e1+'"-''Ynk; Y n k  = o(1). ( 2 . 9 )  

(2.10) 
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where F is quadratic in Yo, Yk,  and y 2 k t  y,. Thus to O(@) the equations for 
Yo(q, t ) ,  Yk(7, t )  and Y2k(q, t )  are self-consistent and allow CP’ to be computed 
up to O ( 8 )  (since a,, = O(@) if n > 2). Substituting 

m 

Y k ( 4 ,  t )  = c A%) +%7) 
m = O  

in(2.10),takingtheinnerproduct with&), andrecallingthat 7:) = O(1)ifm $. 0, 
we find 

(2.11) y k ( q >  t )  = Ahk)(t) $hk’(v) + o(C2) *  

It then follows from the equations for Yo and Y2k that 

Yo(7, t )  = IA6k’(t)12GO(7)+O(€2), Ygk(7,  t )  = IALk’(t)12G2(7)+O(e2), (2.12) 

where Go(7)  and G2(7)  are determinate solutions of ordinary differential equa- 
tions. Finally the amplitude ALk)(t) satisfies the Landau equation 

a~gkydt  + p p ~ p  = - € 2 p ) ~ p p p p +  0(€4), (2.13) 

where the Landau constant, is a determinate parameter. See Eckaus (1965) 
and Kogelman & DiPrima (1970) for specific details and formulas. In  particular, 
these authors show that provided i s  of order unity, the terms neglected in 
(2.13)areof higherorderthanthosewhichareretained. From (2.8)and (2.9), when 
the solution of (2.13) is inserted into (2.11) and (2.12), we thus obtain a solution 
for the perturbation 0’ which is correct through terms of order €2. 

Equation (2.13) possesses a periodic solution of the form Ahk) = A exp ( iwt ) ,  
where 

A2 = [ReP(k)]-1sgn7hk)+0(€2), o = -Im(phk))+e2A21m (b(k))+O(c4) .  (2.14) 

If Re [p(k)] < 0, then in order for A2 to be positive we must have 7hk) < 0 which 
requires R > R,. In  this case an analysis in the phase plane shows that 

lim IAik)(t)]2 = A2. 

Thus a disturbance which initially grows exponentially according to linear theory 
tends to the following supercritical equilibrium solution as t -+ 03: 

t- w 

a’([, 7, t )  = ~ E A  Re [e-i(kc-ut)+&k)(q)] 

+ ezA2[Go(7) + 2 Re e--i2(kc--wt)G 2(7)1 + W3).  (2.15) 

If > 0, then although the solution (2.14) exists when R < R,, we 
have lirn IAhk)(t)/ = 0 if the  initial value of IA&k)(t)(2 is less than A2, and 

lim IAhk)(t)l = coif the initial valueof IA&k)(t)12 is greater thanA2. Thuswhile for 

R < R, the basic flow is stable according to linear theory it is actually unstable 
to disturbances of sufficient magnitude. The basic flow is said to be subject to a 
subcritical instability. 

The stability of the supercritical equilibrium flow (2.15) to O ( 8 )  noise com- 
posed of arbitrary wave-numbers k (as depicted schematically in figure 2) has 
also been investigated by Eckhaus (1965) with generalizations by Kogelman & 

t+m 

t+ m 
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DiPrima (1970). The restriction that the noise is O ( 8 )  allows a linearization of the 
stability problem. As mentioned in $1,  for R-R,  small and positive super- 
critical equilibrium flows of the form (2.15) are stable provided that 

(W) - k J 4 3  < k - Ic, < (k,(R) - w 4 3 .  (2.16) 

See figure 1 (b ) .  A similar result was recently obtained in a statistical framework 
by Newell, Lange & Aucoin (1970). 

FIGURE 2. Schematic depiction of the initial amplitudes in the stability analysis of a super- 
critical equilibrium flow with spatial period 2n/k0, as in Eckhaus (1965). M ,  is the initial 
amplitude of the Fourier component with wave-number k. The scale on the ordinate is 
schematically indicated in orders of magnitude. The small parameter e2 is proportional to 
R - RC(k0). 

3. Non-linear interactions 
We wish to investigate the non-linear mechanism for wave-number selection 

in a competition among a large number of modes having different wave-numbers 
but with comparable initial magnitudes. The Fourier representation of these 
modes and all of bheir interactions can be written as 

where 

and Ak is small in a sense to be made precise later. Notice that a disturbance Q1‘ 
of period 2nlk in 5 can be represented by (3.1) by taking amAk(v, t )  = 0 if m + n j  
and Q1,,Ak(7, t) + 0 if m = n j ,  for all integers n and with j A k  = k.  

Substituting (3.1) in (2 .2 ) ,  multiplying by (2n)-l Akexp (intAk), and integrat- 
ing from - n1A.k to nlAk, we find the following set of non-linear partial differential 
equations (for each component Q1J: 
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FS) = (Pg) 0, . Kf)) &f)@, 

and fork + 0,  

Fg) = (P$)@,. Kf’) + (@@, . Kg)) &g’*, 
k - A k  

+ c [(Pp&. KfLk‘) Sf’,. @,-,I 

+ [ ( P f ! & k .  .K&p) &giP*,+y + (P&k?*)k+/c’ . E k , )  &k‘*)k’]. (3.4b) 

k‘=Ak 

m _ -  
k’=Ak 

The definitions of 2 k ,  sk, P&), &i) and P&)O,. Kg) should be clear, and a bar de- 
notes the complex conjugate. The sums are taken over all consecutive values of k’ 
(a distance Ak apart) between the indicated limits. 

Before going on with the main analysis we must consider several preliminary 
points. The first of these is a discussion of the limiting procedure to  be employed, 
the associated small parameters, and a study of the neutral curve near (k,, A,). 
In  addition we introduce the concept of free modes. 

Modes with wave-numbers near k, are the most rapidly growing according to 
linear theory. Let k, be any wave-number within O[e2(k0,R)] of k, and choose 
Ak so that k,  is an integer multiple of Ak. In  a sense which will soon be clear, we 
are now going to ‘centre’ our analysis on the mode with wave-number k,. Thus 
for the remainder of the paper we write E for ~ ( k , ,  R )  = I 7f@(R)l*. The asymptotic 
analysis as e -+ 0 to be presented is easiest to envision for the special case k, = k, 
wherein the asymptotic expansion is explicitly with respect to the limit R -+ R,. 
But as E -+ 0 the requirement k, - k, = O(e2) means that k, --f kc and hence R --f R, 
(and E,  --f 0) .  (This requirement will also be needed in $ 5 . )  The analysis is meaning- 
ful for small E, and added generality is obtained by centring on k, rather than k,. 

We consider the small quantity 7hk)(R) as a function of k and R in more detail. 
Recall that the equation 7hk)(R) = 0 implicitly defines the neutral curve R = R,(k). 
It follows that the derivative of 7ik)(R) along the neutral curve is zero, and in par- 
ticular 

If we expand 7hk)(R) about k, we find 

Next expanding [ a ~ & ~ ) ( R ) / a k ] , , , ~  about (k,, R,) and making use of the above 
equation gives 

rhk’(R) = 7hk0)(R)+ [O(k,-  kc )+  O(R -R , ) ] (k -  k,)+ O ( k -  k,)2 
= 7 p ) ( R )  + O [ E ~ ( k - k , ) ] + O [ E ~ ( k - k , ) ]  +O(k-ko)2 .  ( 3 . 5 b )  

This equation will be used in $ 5 .  Of immediate concern is the fact that if k = k, 
7hkc)(R) = 7hk0)(R) + O(&) + O(e%;), then 

which shows that cC and E are the same up to an error O(s) as E + 0. 
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For R slightly greater than R, any mode with wave-number k in (kl ,  k,) will 
grow according to linear theory; see figure 1 (b). The width of this interval can be 
expressed as follows. In the neighbourhood of (kc, R,) the neutral curve can be 
approximated by a parabola so that if R -  R, = O(s:) then k,(R) - k,(R) = O(sc). 
This interval can also be thought of as an interval of width O(E) centred on k,. 
We are interested in studying the interaction of a number of modes with wave- 
numbers in this interval. Thus we require Ak = O(s)  which does not preclude the 
possibility that Ak = o(e). 

We denote by J the set of wave-numbers which are within O(s) of k,. The cor- 
responding components ak(q,t) in tihe Fourier series (3.1) are called the most 
dangerous modes. They comprise (a )  all modes which grow, and ( b )  the modes of 
slowest decay-according to linear theory. For such modes 7hk)(R) = O(s2) from 
(3.5 b).  

In  the analyses to follow we shall make extensive use of free modes, denoted 
by € 3 ~ ~ .  These functions are required to satisfy the linearized equations for 
components of wave-number k as well as certain O(e3) initial conditions. Thus 

where the eigenvectors cpf) satisfy (2.5) andthe Cg) are O( 1)  constiantsto be deter- 
mined by the initial conditions. We shall only use free modes for k $ J .  For k $ J 
the free modes decay exponentially with time. We note the following important 
facts (Eckhaus 1965, chapter 8): if we write@, = s3xk +9kT) then the9LF)satisfy 
non-linear equations which contain forced terms due to non-linear interactions, 
but the free modes do not contribute to the forcing terms at lowest order. 

With the aid of the foregoing preliminaries, we can now formulate the central 
problem of this paper. We shall be concerned with a disturbance whose dominant 
terms initially have magnitudes which are O(s)  and are a linear combination of 
the most dangerous modes. That is, *,(q, 0) = O(s)  if k E J .  Our first step is to 
select scales for the various Fourier components which represent the largest 
magnitude which a given component is expected to attain during the course of 
time, given that the most dangerous modes are O(c) .  

To modes corresponding to wave-numbers not near 0, k,, 2k, we assign initial 
conditions O(s3).  Such initial conditions can be satisfied with free modes which, 
as we have already noted, need not be considered in determining the leading 
effect of the non-linear interactions. Furthermore, as we shall see, non-linear 
interactions never cause the modes in question to  grow to a magnitude larger 
than that assigned to them initially. Thus these modes will be assigned a scale 
O ( s 3 ) ,  and this scale is expected to be valid uniformly in time. 

We turn to the scaling of the remaining modes. Consider the particular case of 
the mean motion term (k = 0). Suppose this mode was initially O(e2).  In  spite of 
the decaying effect of initial conditions, it would later reach a larger O(s2) 
magnitude due to the interaction of O(s)  modes near k,. Following this type of 
reasoning, we assign O(s2) initial conditions to modes with wave-numbers near 
zero and near 2k,. We choose an O(s2) scale for these modes, and we expect this 
scale to be valid uniformly in time. 
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Next it is necessary to  consider transition regions linking O(s) modes with 
wave-numbers near k, with O(e3) modes with wave-numbers somewhat farther 
from k,, and linking O ( E ~ )  modes with wave-numbers near zero and Zk, with 
O ( 8 )  modes with wave-numbers somewhat farther away from zero and Zk,. 

Consider a transition region called J" where E < O ( k - k , )  < 1.t As k -  k, in- 
creases from slightly greater than O ( E )  to O( 1 )  the initial conditions for the cor- 
responding@, will be required to decrease in magnitude from o( 1) to O(e3).  Such 
initial conditions can be regarded as the sum of two terms, one O(e3) and one 
O [ E ~ , ( E ) ] ,  providing that (as a minimum requirement) the magnitude of the 
8,(s) decreases from o(1) to O(@) as k -  k,  increases from slightly greater than 
O ( E )  to O(1). We shall employ free modes to satisfy the O ( 8 )  part of the initial 
conditions, writing 

@, = E~x,+E~,(E)Y, ( k E J * ) .  

We shall find it necessary to require much more rapid decay of the & ( E )  than that 
given by the above-stated minimum requirement. 

With this in mind we define the following sets ofwave-numbers and correspond- 
ing scaled Fourier components Y,(v, t ) .  

J = {klk = ~ , + O ( E ) } :  iP, = E ~ , ( E ) @ , ,  8, = 1. 

J* = {kle < O ( k - k , )  < l}: 9, = ~~xk+e81~(~)Y,,8,  = ~ ( l ) .  

I = (klk = O(E)}: iPk = E2sk(E)Yk, 8, = 1. 

I* = {kl~ < O ( k )  < l}: @, = e3xk+e28,(~)Y,, 8, = ~ ( l ) .  

Y = {klk = Zk,+O(E)}: 9, = E V ~ ( E ) Y ~ ,  8, = 1. 

Y" = {kls < O(k-Zk0) < l}: = E ~ X ~ + E ~ S ~ ( E ) Y ~ ,  8, = ~ ( l ) .  

For all other k :  a, = E ~ X ,  -I- e3Y,. (3.6) 

Although a,(€) = 1 for k E J ,  1, Y ,  retention of these 8, simplifies some later 
equations. As indicated in (3.6),  & ( E )  = o(1) for k E J * ,  I*, Y*. 

Motivated by our earlier discussion, we take the initial values of the Y, 
to be zero for k $ J ,  J*, I ,  I* ,  Y and Y*, for the initial conditions can be satisfied 
with the x,. Elsewhere, the Y, may be O(1) initially. All the X ,  may be O(1) 
initially. We shall thus consider an initial-value problem wherein the modes have 
magnitudes as depicted in figure 3. 

It is the central task of this paper, then, to trace the development of the 
disturbance whose modal amplitudes have magnitudes as given in figure 3. 
By our choice of scales, we anticipate that no mode will ever have a magnitude 
exceeding its initial one. Thus we assert that figure 3 can also serve to depict 
an order of magnitude estimate which is uniformly valid in time. 

Validating this assertion requires several steps. In  $4 we shall demonstrate 
by a careful order of magnitude analysis that Yk(q, t )  = O( 1) for k+ J ,  I ,  Y in 
any time interval in which Y,(q, t )  = O( 1 )  for k E J ,  I ,  Y .  In  the present section 
we use this result to analyze Y, when k E J ,  I ,  Y .  We show that Yk(v, t )  = O( 1 ) 

f The notation E < O ( k -  k,) < 1 means that k - k, = o( 1) and E = o(lc - k,) as E + 0. 
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for k ~ 1 ,  Y in any time interval in which Y k ( 7 ,  t )  = O(1) for k~ J .  Furthermore, 
we develop the equations which define approximations to Y k  for k E J ,  I, Y valid 
under these conditions. Finally, in § 5 we shall show that solutions of the approxi- 
mate equations indeed define Y , ( y ,  t )  = O(1) uniformly in time for k~ J .  This 
will complete the chain of deductions, showing that the analysis is consistent. 

We now face a fairly substantial algebraic calculation. The details of this 
calculation are recorded in appendices A and B. Here we will simply outline 
the steps that must be taken. First we substitute the expressions given in (3.6) 

I 
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FIGURE 3. Schematic depiction of the initial amplitudes in the present analysis. M ,  is 
the magnitude of the Fourier component with wave-number k. The central wave-number 
k, is within O(@) of k,. The widths of the wave-number sets J* ,  I* and Y* are foreshortened. 
The O(1) widths of the region between J* and I*  and the region between I* and Y* are 
foreshortened even more. 

for 9, in (3.3) and obtain to the appropriate order of accuracy the equations for 
k = 0,  for k E I but k + 0,  for k E Y ,  and for k E J .  An examination of these equa- 
tions shows that, just as for the case of the periodic solution discussed in 0 2, once 
the family of Fourier components Y k  for k€J is known then the non-homo- 
geneous terms in the equations for other k’s are known and we can solve for 
Yo, Yk for k E I but k + 0,  and Y k  for k E Y .  

Thus we focus our attention on the equations for k E J ,  and wrih 
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Here bLk)(t) = ( B k ,  $Lk))  where B, is the term 0 ( e 2 )  on the right-hand side of the 
equation for \yk and is composed of terms quadratic in Y k 8  and yw with k" EJ 

and with kf = 0, or k' E I but k' p 0, or k' E Y .  See (A4).  
Next (3.7) and (3.8) are used to evaluate the non-homogeneous terms (which 

involve quadratic interactions of the y k )  k E J )  in the equations for '4, with 
k = 0, k E I  but k =I= 0, and ~ E Y .  It turns out that Yo, v k  for ~ E I  but k =k 0, 
and Y, for k E Y can be expressedin terms of sums of quadratic products of Abk)(t) 
for k E J multiplied by determinate functions of 7. It follows that the Bk for k E J 
have similar forms and that finally bjk)(t) can be expressed in terms of quadratic 
products of the ALk)(t). The expression for bLk)(t) is given in (A24) of appendix A. 
This expression is very complicated. However, since bLk)(t) appears multiplied 
by e2 in (3.9) it is only necessary to evaluate it in the limit as E +  0; that is, terms 
O ( E )  can be neglected. This results in oonsiderable simplification. The leading 
approximation for bbk)(t) is given in (A30).  

It is convenient now to introduce a notational convenience. The modes in J 
are separated by Ak and are spread ove1 an interval of width O ( E )  centred on k, 
on the K axis. We take Ak = UE where cr = O ( l ) ,  so that the denumerable set 
of modes in J can be characterized by k, + nae, n = 0, k I ,  k 2 ,  . . . . (The Fourier 
components in I are at  0, ae, ~ U E ,  . . . and those in Y are a t  2k, + nae, n = 0, 1,  

2, . . . .) The parameter awill be discussed further in $5; for the present we point 
out that we do not exclude the possibility that a = o(1) as E --f 0. We write 

( 3 . 1 0 ~ )  

(3.10b) 

for k~ J .  Then making use of the results in the appendices we find that the 
fundamental system of amplitude equations for the most dangerous modes 
( k ~  J )  is 

dA, /d t+pP)A,  = - E ~ P ,  x x A,AmAn+,-,+O(E3) (n = 0,  k 1, f 2 ,  ...I. 
p s J  msJ 

(3.11) 

Here and in the remainder of the paper the summation notation means a 

sum over all the wave-numbers k,+ma~ in J ,  and p, is the Landau constant 
evaluated at  k = kc, R = R,. We see that the error in (3.11) relative to terms 
retained is O(s) .  This relative error would be 0 ( e 2 )  if we had included the term 
O ( E )  in the evaluation of ahk)'. We shall defer our major discussion of (3.11) until 
$ 5 .  None the less, at  this stage it is worth emphasizing the significance of the 
termsin (3.11). 

We are concerned with the interactions of a denumerable set of fundamental 
modes with wave-numbers k = ko + nus, n = 0, f 1, f 2, ... ,where ko = kc + O(e2). 
Each of these modes will in general be assigned a different initial value, but all 
such initial values must be O(c)  in magnitude. Each mode generates its own &st 
harmonic and contribution to the mean. These have magnitude O ( 8 ) .  There 
are interactions among the fundamentals which generate O(e2) terms as well as 
interactions which generate higher-order terms, as illustrated in figure 3. Modes 
@Lk)when k = O ( E )  [ k ~ l ]  and when k = 2k, + O(s)  [k E Y ]  interact with thefunda- 

msJ 
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mental set [k E J ] ;  the influence of these interactions is felt through the Landau 
constant p,. All other modes do not influence the controlling fundamental modes 
whose amplitudes are given by (3.11). 

In  a Fourier analysis of the motion the Fourier components associated with 
wave-numbers k, + nm E J are given by 

*ko+nae(q, t ,  = E y k o + n u e ( ~ t  t, 
= €A,(t) +&kO+"""(T/) + O ( E 2 ) ,  (3.12) 

and the A ,  satisfy (3.11). The error in (3.12) is O(G) since the error in the A ,  is 
O(e). Once the fundamental amplitudes A,(t) are determined, all first interactions 
associated with the fundamental family of disturbances can be computed to first 
order. (See appendix A.) 

If the non-linear terms in (3.11) are neglected, we obtain the standard result 
of linear theory: 

dA,/dt +/,&)An = 0, A&) = A,(O) exp ( -pp)t). 

Let us now consider the special case of (3.11) wherein all the A ,  except one, say 
A,, are identically zero. We then obtain 

Remembering the notation introduced in ( 3 . 1 0 ~ )  we see that the above equation 
is almost identical with (2.13), the equation governing the amplitude of a periodic 
disturbance of wave-number k. By making the proper identification k = ko + qae 
the equations become identical except for the fact t,hat p(k) appears in (2.13) while 
p, appears above. But since k - k, = O(B)  and assuming that p, = O( 1) it  is con- 
sistent with the neglect of higher-order terms in (2.13) to approximate /3(k) by 
p(kJ = p,. We thus see again that pc is identical with the Landau constant which 
is determined by a solvability condition in the ' classical ' non-linear stability 
analysis of a disturbance of spatial period Zn-lk,. 

To sum up, two parameters appear in (3.1 1) .  One of t,hem, -,up), is the growth 
rate of a perturbation of wave-number k, + nm. (This parameter depends on R. 
Of course, IRe (,u&O))I = e2 is of special importance.) The other, p,, is a Landau 
constant. To the order of accuracy given here this parameter is independent 
of R and is independent of wave-number; it can be determined once and for all, 
given a physical problem which fits into the framework of our analysis. 

We now turn to the postponed matter of the uniform validity of the scaling 
givenby (3.6). 

4. Scaling 
For reasons stated in 3 1 it is not at  all clear that energy which is initially largely 

confined to  the most dangerous modes will not spread to the entire spectrum 
of modes as time increases. The heart of our analysis, therefore, is a demonstration 
that when the real part of the Landau constant /3, is positive and O( 1) then it is 
consistent to regard as uniformly valid in time the initial order of magnitude 
estimates given by (3.6). In  this section we sketch the rather complicated and 

46 F L M  49 
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detailed examination of the governing partial differential equations which shows 
that consistency follows from the boundedness of solutions of the system (3.1 1). 
This boundedness is demonstrated in $ 5.  

It is convenient to write 

*,(% t )  = E3Xk(T7 t )  + Ed,W +k(% t )  (k4J) .  (4.1) 

The X ,  are the O(1) exponentially decaying ‘free’ modes which were discussed 
above (3.6). The quantities d, and qk are closely related to the quantities 8, 
and \y, defined in the scaling (3.6). The reader is advised not to be concerned 
about the (easily obtained) exact relationship; he should accept that there are 
slight advantages in starting the present discussion with the new scaling (4.1). 

When l c ~  J ,  the distinction between free and forced contributions is no 
longer of value. For k g  J we shall assume that the 0, are O ( E )  uniformly for 
0 6 t < a, writing 

(These are the most dangerous modes.) 
The goal of this section is to  choose the scales dk(e) so that the forced contribu- 

tions +, are O(1) uniformly in time, Ice J ,  assuming that +, = O(1) for keJ. 
As was stated in Q 3, in doing this we can neglect the free contributions (Eckhaus 
1965, chapter 8); the magnitude permitted for the free contributions has been 
selected specifically to make this neglect possible. 

We shall use the notation dk(e)  <f(e) to signify 

ak = +k = O(1) for k g J .  (4.2) 

Idk(€)\ < Mf(e)  when 0 < e < eo; 

while dk(e )  x f(e) will imply 

mf(e) < Idk(e)I < Mf(e )  when 0 < E < eo, 

for some positive constants m, M and eo. As in $3,  we also use the notation 

to mean that as E + 0, h, = o(f),f = o(h,). 

magnitude than the most dangerous modes. 

we expand these functions in series, using the normalized eigenfunctions cf$) : 

We look for a solution wherein d, < 1, so that no modes are initially larger in 

In determining the behaviour of the scaled (forced) Fourier components +k 

+ k ( % t )  = : q?(W$V/9. 
p=O 

(This expansion is the counterpart of (3.7), an expansion of the Y k ( y ,  t )  in terms 
of the r#$)(q) with coefficients AF)(t) . )  

We f i s t  record the fact that the forcing terms in the equations for the coeffi- 
cients Bg)(t), using the unscaled Ff) defined in (3.4), turn out to have a magnitude 

, unless = o( 1 )  in which case this magnitude is 
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To see this, one must make an estimate with the aid of an integration by parts, as 
in Eckhaus (1965, $7) .  Inclusionof thefactor 7hk) is harmlessif .hk) = O(1). Hence, 
if 

Ffcl) z Ed, 7hk) (4.3) 

then the forcing terms in the equations for the Bg)(t) are O(1). Hence the +k(T, t )  
should certainly be O(l) ,  when 7hk) = O(1). Condition (4.3) also ensures that 
+k(q,  t )  = O(l )  for kfJ*, a k-region where 7hk) .I. O(l),  for then as in the parallel 
equation (3.8) 

The coefficient Bhk) satisfies an equation which is analogous to (3.9) and which 
has an O( 1) solution. For all k, then, we must determine d,  so that (4.3) holds. 

+k(?, t ,  = B6k)(t) @hk)(r) + O(@)* 

To see what (4.3) entails it is useful to write (3.4b) symbolically as 

k - A k  a, 

The symbolic notation in (4.4) means that for a + 0 the order of magnitude of the 
left-hand side equals the order of magnitude of the right-hand side. Expression 
(4.4) for Ff) retains its essence, since the operations of differentiation, summing, 
and taking complex conjugates do not affect the order of magnitude estimates. 
With this symbolic notation, (4.4) also holds for Ff). Substituting (4.1) into (4.4) 
wefindfork2 0 

where O(1) factors involving +’s are omitted in our symbolic notation. 
When 7hk) M 1 the left side of ( 4 4 ,  by (4.3), is N” 1. Since dk< 1 ,  the sums on 

the right side of (4.5) are < 1. To obtain the proper contribution from the right 
side of (4.5) we must have 

dk <& when 7hk’ M 1,  (4.6) 

a result which we shall need later. 
It is now not difficult to see that the ad, term can be omitted from the require- 

ment on the d’s given in (4.5). This follows from the fact that O(7hk)) > Gfor all 
k corresponding t o  unknown d,, i.e. for k $ J .  Using (4.3), the left side of (4.5) is 
therefore greater in magnitude than €2 for k $ J .  Since do .< a by (4.6), we have 
the desired result. 

Equations (4.3) and (4.5) therefore imly that 

(4.7) 

The sup symbol is to be interpreted as requiring the term of highest order of 
magnitude which is encounted as k‘ traverses the indicated intervals (in steps of 
width Ah). Derivation of (4.7) requires that the infinite sums in (4.5) be split into 
finite sums (whose magnitude is determined by their term of largest magnitude) 
plus remainders which can be made arbitrarily small by taking enough terms in 
the finite sums. 

46-2 
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To begin our examination of how (4.7) restricts the d's ,  we consider the special 
case where k is within O(E)  of 3k,. Because of (4.2) and (4.6) the sup in (4.7) is 
attained from pairs of d's ,  one of whose subscripts refers to a wave-number in J .  
Thus d ,  < €2 for k = 3k, + O(E) .  

Next, suppose that k is within O ( E )  of 4k,. Proceeding as in the previous 
paragraph we observe that the terms from which the sup is to be selected are 
no larger in magnitude than dk'dk-k' where d, = o( 1) [k' near k,] and dk-k' = O(@) 
[k' near 3k,]. If 0(4k,- k) > E ,  the sup will be smaller. To see this, consider for 
example the above-mentioned term dk'd,-,. If k - k' is within O ( E )  of 3k0 then k' 
must be farther than O(s)  from k,, with a resulting contribution to d Ic *d  k-k' 

which is less than O(E). 
Reasoning as in the above treatment of wave-numbers near 3k, and 4k, we 

see that there is a sequence of neighbourhoods, around mk,, m > 2, where 
d, < By similar reasoning one can determine restrictions on the dk when 
k - mk, = 0 for all m, m = 0, 1, 2, . . . . The first step in such reasoning shows that 
d ,  < €2 for such k. There is no need to carry the reasoning any fudher, for one 
can now assert that unless k is near 0, k,, or 2k, both free and forced contributions 
to 0, are no larger in magnitude than O(e3) so that (Eckhaus 1965, chapter 8) 
these 0, can be ignored in determination of the dominant terms in the equalions 
for the a,, k near 0, k,, 2k,. 

It remains to determine the consequences of (4.7) when kis near 0, k, and Zk,. 
We write 

dk(e)  = edLl)(~) when O(k)  < 1, ( 4 . 8 ~ )  

and dk(e)  = sdf)(s)  when 0(2ko-k) < 1.  (4.8b) 

Considerations like those of the next to last paragraph show that 

&)(e) = O(1) if k d ;  d f ) ( s )  = O(1) if ~ E Y .  (4.9) 

Using (4.8), (4.9) and (4.2) it  is not hard to deduce from (4.7) that 

d p )  = SUP d,dl;+v ( k ~ l " ) ;  (4.10) 
k'tJ 

d f )  = SUP d,cTd,-,. (ICE Y*);  (4.11) 
k'€J* 

We can now set up a cyclic sequence of estimates for the d,, k E  I*,  J*,  Y*. 
We first observe that 7%) has the same order of magnitude as e2 + (k - ko)2 when 
O ( k - k ) ,  < 1,for 

e 2 + ( k - k , ) 2  = O($)  when O ( k - k , )  < E ,  

= O(k-ko)2 when E < O ( k - k , )  < 1.  

But, from (3.5), when E < O(k-k , )  < 1 

7Lk) = O(k  - ko)2 since O [ ( k  - k0)2] > e2 and O[(k  - k0)2] > O[$(k  - kO)]. 
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Using this, (4.9) and (4.12) allows us to write 

dk(e) < f ( k ,  6) when O ( k -  k,) < 1 ,  (4.13) 

where f ( k , s )  = .2/[€2f(k-k0)2], (4.14) 
sincedk(e) < 1. 

Starting with (4.13) we obtain successively more accurate estimates of d, 
for kEI*, J*, Y* by cycling through (4.10) to (4.12). Thus, (4.10) and (4.13) 
imply 

dt ) (s )  < maxf(k',s)f(k'+k,e) (keI*). 

From figure 4 it is clear that the max requires either k' or k + k' to be in J .  If 

k'EJ* 

k' = k, + O(E) 

where 

Thus (4.16) 

Similarly, dP)(e) < g , ( k , € )  = ~~/[€'+(2k,T k)2] ( k ~  Y*),  (4.17) 

where the choice of sign is immaterial. Using (4.13), (4.16) and (4.17) successively 
in (4.10), (4.11) and (4.12), respectively, we deduce 

d $ ) ( ~ )  <gy(k,s) ,  kEI*; d , ( ~ )  <fM(k,e), ~ E J * ;  

d(k)(e) < gtf(k, B ) ,  k E  Y*; (4.18) 

where M is any positive integer. 
We are now ready to obtain our final estimates for the d,. When 

k E J ,  k-k, = O(E)  SO f(k,€) = O(1). 

Thus (4.18) shows that a?,(€) = 0(1 )  for kEK. When k g  J*,  k > O(k- k,) > E so 
f(k,e) = 0[e2/(k-k,J2]. Thus (4.18) implies that dk(e)  goes to zero with e faster 
than any power of e/(k - k,) for k E J*.  In particular a,(€) goes to zero faster than 
any power of E if k - k, = O(ea), 0 < a < 1. Of course, d,(e) = o( 1)  for k EJ*. Simi- 
lar results hold for I* and Y*. Thus (to sum up) for (4.10), (4.11) and (4.12) to 
hold it is necessary that 

(4.19) 

where M,, MI and M2 are arbitrary positive integers. Moreover, the requirements 
of (4.19) certainly do not contradict the specifications of (4.10), (4.11) and 
(4.12). Note also thab (4.19) implies that d,(e), d$)(E) and dg)(s) must be o(1) 
for k E  J*, I*, Y* respectively, which is equivalent to what was assumed in 
(3.6) when k E  J*, I*, Y*. 

Let us look back at  what we have accomplished. In  the derivation of the ampli- 
tude equations (3.1 1) we assumed that the forced modes Y, defined in (3.6) were 
O( 1) uniformly in time, k $ J .  The reasoning of the present section shows that this 
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assumption is valid provided that the scales of the forced modes decrease rapidly 
according to (4.19); so that (4.10), (4.11) and (4.12) can be satisfied. This means 
that initial values must be restricted to  those of the form pictured in figure 3. 
[Because modes with wave-numbers k not in J initially decay exponentially, 
we conjecture that all modes could be assigned O(e) initial conditions. After an 

t ko-k ko 

2 

< O(1) > 

'initial layer' in time O ( @ )  we expect that the exponential decay (according to  
linear theory) would reduce the magnitude of the modes so that the restrictions 
we require are satisfied. For application of the initial layer concept to periodic 
disturbance, see Matkowsky (1970).] 

I n  the present section (and in $ 3 )  we assumed that the +)k(q, t )  are O( 1)  uni- 
formly in time, k g  J .  But according to  (3.8) and ( 3 . 1 0 ~ )  these JCk(7,t) have the 
same magnitude as the Abk)(t) which are determined by the system (3.11). I n  
the next section we complete the demonstration of consistency by showing that 
the solutions of (3.11) are O(1) uniformly in time. 

5. Discussion of the amplitude equations 
To recapitulabe, we have considered the development in time of a perturbation 

@'given below. The unperturbed basic flow is characterized by the parameter €2. 
The analysis has been simplified by the assumption that the parameter 6 is small, 
where e2 = G(k,,  R) = I T & ~ O ) ( ( R ) ) .  Here $0) = Repbko) where phko) is the growth rate 
for a mode with wave-number k,, and k, is a wave-number within O ( @ )  of the 
critical wave-number k,. Each mode considered in the analysis has a wave- 
number k which can be written as k = mAk for some integer m. We have set 
Ak = v e  where v = O(1) (which does not preclude the possibility that v = o(1)). 
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The Fourier analysis of the perturbation Qr’ is given by (3.1): 

727 

Qr’(5, 7, t )  = C amAk(q, t )  e-imAkf. 
m=-w 

In (3.6) we proposed a certain scaling of the coefficients amAk. In  $33 and 4 we 
showed that if this scaling is valid initially then it is uniformly valid in time. 
Of primary interest are the most dangerous modes *p,(T, t )  with wave-numbers 
in the set J = {klk - k, = O(e)}. I n  our analysis we assume that the most dangerous 
modes initially have magnitudes O(s). It then turns out that there is a self-con- 
sistent scaling with the first harmonics of the most dangerous modes, the mean 
motion perturbation, and other first interactions all O(e2), and with other modes 
of higher order. Fu,rther, the first harmonics and mean motion can be expressed 
in terms of the most dangerous modes (see 3 3 and appendix A). The denumerable 
set of most dangerous modes is given to lowest order by (3.12) : 

@ko+nus(7, t )  = e[A,(t) 4$3+’buc)(q)] + O ( @ )  (n = 0, & 1, k 2, . . .). 
Here +Lk)(7;1) is the eigenfunctionof linear theory defined above (2.7). The functions 
A,(t) satisfy the amplitude equations (3.1 1) 

dA,/dt +p$@A, = - e2Pc A, C AmA,+,-, + O(e3) (n = 0, 1, 2,  . . .), 
p d  ntEJ 

where the summation notation means a sum over all of the most dangerous modes. 
In these amplitude equations, P, = /3 (kc)  is the Landau constant for a disturbance 
having the critical wave-number [see (2.13) and the remarks following it] while 
p p )  is an abbreviation for p&ko+nue). 

The most interesting consequences of our analysis follow from (3.11). It is 
consistent with our previous analysis to expand 76,) and vb”) about k, for a fixed 
R with R - R, = O(e2) and to retain only terms through O(s2). First, 

.in) = vo + eanvl + e2a2n2v2 + O(n3a3e3), (5.1) 

where the parameter v1 is the group speed of the family of waves and v2 = @2v/ak2 
evaluated at k,(or k,) is one-half of the rate of change of group speed with wave- 
number. Next, making use of (3.5a), (3.5b) and the fact that €2 = I‘T&~)(R)I we 
can write 7p = + e w n w  + 0(€3~a)  

where 15.3) 

Within Dhe error in our analysis the term a27ik)/aIc2 in (3 .5a )  can be evaluated at 
either (k,, R) or at (h,, B,), and is necessarily non-negative for the problems under 
consideration since (kc, R,) is a minimum point on the neutral curve. The para- 
meter a is a measure of the change in growth rate with changing wave-number for 
fixed R. As we have indicated earlier (r = Ah/€, and hence a measures the step size 
between the wave-numbers of successive modes relative to  the width of the band 
of wave-numbers of the most dangerous modes. We emphasize that e m  = O(e) 
for all n. 



728 R. C. DiPrima, W .  Eckhaus and L. A .  Segel 

Finally, letting 

7 = sat, A,(t) = exp [ - i (v ,  + scmv,) t ]  an(e2t), (5.4) 

we obtain from (3.11) 

+ O(e, ea-na,, sn3a3an), (5 .5 )  

for n = 0, 1 ,  f 2, . . . with k, + nae in J .  In (5 .5 )  we have explicitly shown the 
order of the various error terms which arise from the expansion of pin). I n  the 
following the error term will not always be recorded. Also in the remainder of this 
section we shall take R > R,, so that T&’)/ I 7b0)1 = - 1 ; in a study of subcritical in- 
stabilities this ratio should be replaced by 1. 

We write 
an = Ian1 exp (ion),  P c  = I P c I  ~ X P   XI, 

and define the ‘energy ’ E by 

It is a straightforward matter t o  verify that 

d E / d ~  = (1-a2a2n2)~a,~2-(cosX)~rB,( x (Cz+X:J, (5.7) 
n s J  neJ 

where 

If the real part of the Landau constant p,, Ip,I COSX, is positive then the second 
term on the right-hand side of (5.7) is negative, and consequently the non-linear 
terms will have a stabilizing effect.? Thus, if non-linear effects act to  stabilize 
a small two-dimensional disturbance composed primarily of a single mode with 
a near-critical wavelength (as they are well known to do in the Taylor and 
BBnard problems, where pc is real and positive) then the non-linear terms also 
stabilize small disturbances composed primarily of a number of modes with 
wave-numbers near critical. 

Clearly an analysis of the infinite set of non-linear ordinary differential equa- 
tions ( 5 . 5 )  for the amplitude functions an(7) is a formidable task. However, con- 
siderable insight can be gained by the introduction of a special Fourier transform 
of the ~ ~ ( 7 ) .  Such a transform allows the replacement of ( 5 . 5 )  by a single non- 
linear partial differential equation; and moreover in certain cases the perturba- 
tion a‘, correct through terms O(s) ,  can be expressed directly in terms of the 
transform function. 

We thus define the complex-valued transform function Z by 

Z ( w ,  7 )  = x a,(7) e--ianw. 
n f J  

(5.9a) 

t Equation (5.7) has been derived using (5.5) in which the growth rate has been ex- 
panded. However, one can work directly with (3.11); only the linear terms arc altered 
and the non-linear terms ere stabilizing as above. 
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By definition, 2 is a periodic function of w : 

Z(w + (2n j /~ ) ,  r )  = Z ( w ,  r ) ,  (5.9b) 

wherej is a positive integer. Further, 

(5.10) 

It is easy to see that (5.5) is equivalent to 

az a2.z 

a7 a 0 2  
- = (01' + ivz) - + Z( 1 - /3,I Z I ') + O( 6 , ~  aZ/Lb, E a3Z/aw3), (5.1 1) 

with the periodicity condition (5.9b). Note that 

47T 
(5.12) 

To illustrate the use of the transform 2, we shall make a precise statement 
concerning the global stability of solutions of the system (5 .5 ) .  (This can also be 
done directly, using (5.7).) From (5.11) 

Integrating with respect to w ,  by parts on the terms in the square brackets, we 
obtain 

where we have used (5.12). But according to a version of the Schwarz inequality 

Thus if RePC > 0,  then 

Using the relation between a, and A ,  given in (5.4) and assuming that 

(dE/d.z) < 0 if E > (2RePJ-l. (5.13) 

Rep, = W), 
we conclude that the functions A,(t) are O( 1) uniformly in time if they are initially 
O( 1). In  accord with our remarks at  the end of Q 4, this result completes our demon- 
stration that it is consistent to assume that the initial scaling (3.6) is uniformly 
validintime. In  addition, from (5.13) wenote that within thelimits ofthis theory, 
a steady equilibrium state must have energy E less than (2 

Let us examine the relation between the perturbation <p' and the transform 
function 2. By approximating &,ko+nue)(q) by +bko)(y) we can use (3.12) to write 

@'( [ ,q , t )  = 2eRe[4iko)(q) 2 e-i(ko+n~~)~An(t)]+ O(e2). (5.14) 
neJ 

With (5.4) this becomes 
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At this point it is necessary to consider the cases v = 0 and v =!= 0 separately. 
We begin with the case v = 0 (axisymmetric Taylor problem, BBnard problem). 
In this case, using the definition (5.9n), and remembering that vI = 0 if v = 0, 
we see that (5.15) becomes 

W(c,q,  t )  = 2eRe [ t$hko)(q)  eciko U ( e &  &)I + O(e2),  (5.16) 

so that 9’ can be expressed directly in terms of 2 without the intervention of the 
modal amplitudes a,(t). If 2 were independent of 6 then (5.16) would provide the 
appropriate leading term in a non-linear analysis of the development of a dis- 
turbance which is periodic in 6 with the wave-number k,. (Compare the limiting 
formula (2.15).) As written, (5.16) can therefore be regarded as taking into 
account possible spatial modulations of this disturbance’s amplitude. The 
presence of the e factors in the arguments of 2 means that the modulations vary 
spatially with an O(e-1) length scale and that the shape of the modulating function 
2 (or envelope) changes on an O(e-2) time scale. 

Segel (1969) and Newell & Whitehead (1969) studied such slow modulations 
in the free-free BBnard problem using formal multiple scale techniques. Not 
surprisingly their direct approach required considerably less computational 
effort than our approach. In  this special case (of course v = 0 €or the BBnard 
problem) our equation (5.11) is in agreement with their result. 

A question of fundamental importance is that of wave-number selection in a 
competition between the most dangerous modes. Snyder (1969), for example, has 
demonstrated that for the Taylor problem, steady axisymmetric flows periodic 
in the axial direction with different wave-numbers can be obtained at the same 
value of R by changing the initial conditions. Also see Chen & Whitehead (1968) 
for similar results on the BBnard problem and Coles (1 965) for the non-axisym- 
metric Taylor problem. Suppose that as t -+ co, 

A,(t) + 0 for n + p and A,(t)+A$). 

Then it is easily seen that the perturbation tends to become spatially periodic 
with wave-number k, +pse. Wave-number selection has taken place. If selection 
from the most dangerous modes always occurs then the only stable steady solu- 
tions for R slightly greater than R, will be spatially periodic with wave-numbers 
near kc. 

A full investigation of wave-number selection is well beyond t h e  scope of this 
paper; however, we shall make one contribution to the matter. Our investigation 
has shown (in general) that if at least two of the most dangerous modes are initially 
excited at an O(e)  level then a multi-modal solution will exist for a time. A key 
question is, can a multi-modal solution persist for all time, or will all but one of the 
amplitudes A ,  decay to zero. We shall now show that for the case v = O , l ,  > 0 
there is a steady solution of (5.11). Thus the set of steady multi-modal solutions 
is non-empty in this case. On the other hand, the solution in question will be seen 
to be unstable, so whether or not selection takes place remains open. For recent 
work on this question see Ponomarenko (1968) and Newell et al. (1970). 

To obtain the steady solution of (5.11) with v = 0, /3, > 0 we set 

2 = (P,)-*r(x) eie(x); r ( x )  > 0, z = om-1. (5.17) 
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We see that (5.11) with v2 = 0 is satisfied if 

r”-cC2,~-3+r(i-r2) = 0, (5.18) 

where (5.19) 

and co is a constant. Because of the periodicity condition (5.9b), the function r 
and the constant co must satisfy 

d h  = 2nn (n = 0, 1,2,  ...), (5.20) 

for some positive integer m. The simplest case is when n = 0, c,, = 0 and O(x) = 0. 
Then r satisfies an elliptic equation with solution 

r ( x )  = asnbz ,  a2 = 2k2( 1 + k2)-I, b = (1  + k2)-2. (5.21) 

The modulus k of the elliptic function is determined by 

4K(k)/b = 2nm/acr, 

where K is the quarter-period of the elliptic function. See Arscott (1964, appendix 
C). 

To examine the stability of the solution (5.21) we write 

Z ( w ,  7) = (PJ-4 r(a-1 w )  + Z,(w, 7). (5.22) 

We substitute into (5.11) and linearize. Remembering that we are considering 
the case v = 0 and writing 

Z,(w, 7) = exp ( S T )  C(y) (y = ba-lw), (5.23) 

we find that C must satisfy the Lam6 equation 

d2C/dy2 + C[H - 6k2sn2y], where H = (1 + k2)  (1 - s).  (5.24) 

From Arscott (1964, p. 205), supplying a niissing factor of two, if 

H =  2(1+k2)-2(1-k2k’2)4 ( k f 2 =  l - k z ) ,  (5.25) 

then (5.23) is satisfied by 

[(y) = ~ 1 2 2 ~  - 3k2[1 + k2 - (1 - k2k’2)6]. (5.26) 

When H has the value given by (5.25) it can be seen that the growth rate s is 
positive. Hence 2, is unbounded with increasing time and the multi-modal 
equilibrium solution (5.21) is unstable. 

Segel (1969) found that in two-dimensional B6nard convection the steady 
solution (5.21) provided an amplitude modulation which was sufficient to ‘fit ’ the 
steady supercritical solution which is appropriate for unbounded horizontal 
layers between vertical walls. It was necessary to require that r vanish at the end 
points of its domain of definition, so that the boundary conditions at  the walls 
could be satisfied. If the walls were far enough apart, T might also vanish in the 
interior, giving ‘imaginary wall solutions ’. The instability of the imaginary wall 
solutions can be demonstrated (see Segel 1970) but the modulation with no 
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interior zeros appears to be stable. (The perturbation (5.26) is not admissible in 
this case, as it does not satisfy the boundary conditions.) Newel1 & Whitehead 
(1969) also discussed aspects of the solutions of (5.11) and their stability in the 
BBnard problem. 

We now turn to the case v + 0. We shall find that the situation is considerably 
different from the case v = 0. Use of the transform Z no longer leads to easily inter- 
preted results for it is now impossible to cast (5.15) into a form so that 0’ is 
expressed directly in terms of 2. To determine the leading terms in a’ one must 
solve the partial differential equation (5.11) for the function 2, compute the an 
by the inverse transform formula (5.10), and then employ the superposition 
(5.15). However, by proceeding in a slightly different manner, we can obtain a 
result similar to (5.16) in the case v + 0. 

Let us reconsider the amplitude equations (3.11) with vhn) and 7p) given by 
(5.1) and (5.2); we have 

d A n / d t  + [iv, + eianv, + e2(a2a%2- 1 + iv2n2v2)]  A ,  

= -e2bp, E C Ap&An+na-p + 0(e3 ,  e3naAr1, e3n3a3A,). (5.27) 
~ E J  meJ 

(5.28) 

where the u,* can be expressed in terms of Z* in the usual way. From (5.14) we 
have 

= 2eRe [ + i k o ) ( q )  e-i(koc+vot)Z*(e(, t ) ]  + O(e2). (5.29) 

Thus the leading term in the expression for a’ has been expressed in terms of the 
function Z*. 

The equation for Z* is obtained from (5.27) making use of (5.28): 

az* a 2 2  * 
at ao aw2 
-- - ev - + e2(a2 + iv,) - + e V * (  1 - ,4,I Z* 12) + O( €3, €3 - az* 

(5.30) 

In the case v1 = 0 and with the change of variables 7 = e2t (5.20) reduces to (5.1 1) 
with v2 = 0. Thus (5.11) is a special case of the present equation. To interpret 
(5.30) we first note from (5.29) that Z* can be regarded as the envelope of a wave 
train with carrier whose wave-number and frequency are k, and v,, respectively. 
The aZ*/aw term reflects a tendency for the envelope to move at  the group speed 
vl, for in co-ordinates moving with speed v1 in the negative direction this term 
disappears (see below). The term a2Z*’/aw2 is of diffusion type with complex 
‘diffusivity ’ a2+iv2 and can be traced to the n2 terms in (5.27). Note tha t  v2 is 
non-zero when waves of different length have different speeds, so the v2 contri- 
bution is due to dispersion. The term proportional to Z* results in a growth 
of Z* with time, reflecting an underlying instability of the basic flow. The term 
2*12*12  gives rise to a non-linear modification of this growth. 

Since E appears in (5.30) it is clear that Z* is not simply a function of w and t ,  
but also depends on e: Z* = Z*(w,t;e). Further, since e2 multiplies a2Z*/aw2, 
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(5.30) is of the singular perturbation type. Thus the first approximation to the 
solution Z* that we shall construct will depend on the values of the arguments 
u = ec and t that are of interest. We therefore introduce the family of transforma- 
tions 

6 = & - a ~ *  or w = +-am*, t = &-or*, (5.31) 

az* I v - +z*(l-pcjz*l~)=o 
I A 2  aO* 

I 
I P(1 -/lclZ*I*)=O 
I 
I 
I 

I a 7* 
I az* =z*( l -~c~z*~~) 

2 I r c -  

b l  / 
/ 

I =v1 aw* az* +Z*(1 -/?elZ*lz) 

/ 
I I 

1 2 

a 

FIGURE 5. Limiting forms of (5.30) for E = O ( E - ~ )  and 1 = O(e-b) 
for different values of a and b. 

with a 0, b 
the new variables 7* and w * ,  we have from (5.30) 

0. With the understanding that Z* has been redefined in terms of 

+ 0 (€3, €U+2 ao* "* , €3a - (5.32) 

The limiting forms of (5.32) for different values of a and b are depicted in figure 5. 
We note that we must restrict a so that a > 0, for if a = 0, the error term in (5.32) 
which arises from the expansion of vp) is of the same order as terms retained. 
For a = 0 it is not permissible to expand u p )  as in (5.1); however in this case the 
non-linear terms on (5.32) are negligible and the equation is of little interest. 
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As can be seen from figure 5, a distinguished limit occurs for a = 2, b = 2; 
that is t = O ( E - ~ ) .  All other equations can be obtained from the equation for 
a = b = 2 by rescalings. Thus the equation 

azf az: - -  - v - +z;(1--pClz;I", 
a?* l a w *  

(5.33) 

with T* = €2t, o* = €2[, (5.34) 

is a fundamental equation to be studied. The subscript 1 has been introduced 
t'o indicate that 2: is the f is t  approximation to Z* in the limit E --f 0 with T* 

and w+ fixed. 
In  this case we have from (5.29) that 

a'([, 7, t )  = 2s Re [c$iko)(7) e-i(kooE+vot)Z~(c2[, e2t)] + O(s2) .  (5.35) 

Equation (5.34) is equivalent to a fundamental equation derived independently 
by Stewartson & Stuart (1971) in their analysis of the non-linear instability of 
a wave system in plane Poiseuille flow. It is immediately evident that under 
the change of variables x = w* + vlr* = $(&+ v,t), (5.33) takes the form 

aZ;jar* = ZT(i -p,lZ;Iz), (5.36) 

where 2; is now regarded as a function of r* and the parameter x. Equation 
(5.36) has the form of the classical Landau equation with x as a parameter, and 
can be solved exactly. Alternatively, r+ can be eliminated to obtain an equation 
for 2: as a function of w+ and the variable x. Also with reference to the paper of 
Stewartson & Stuart, we note that their equation (4.10) in which the parameter 
6 + v,t is regarded as being variable rather than a constant, can be obtained from 
(5.30) by making the change of variables 

r* = s2t, X = e([+vlt), w = €5, (5.37) 

which yields a t  lowest order 

(5.38) 

We see, then, that our results, when comparable with those of Stewartson & 
Stuart, are in agreement with theirs. The reader is urged to consult the valuable 
paper of these two authors for a discussion which is closely related and comple- 
mentary to the material of the present paper. A full treatment of (5.30) is beyond 
the scope of the present paper: however, we note that it would be of considerable 
interest to study the various degenerations of (5.30) and their matchings with the 
goal of determining the development with time of an initial disturbance. 

Consider now the implications of the periodicity condition in w on 2". From 
the definition (5.28) of Z* i6 is clear that 

Z*(w + (27r/cr)j, t )  = Z * ( w ,  t ) ,  (5.39) 

for some positive integer j .  On the other hand, under the different limiting pro- 
cedures describedabove we will obtain different equations for first approximations 
to 2". We require that these fist approximations be periodic in w ,  but there is 
an additional restriction. Suppose, for example, that using a certain limit we 
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find a first approximation to the solution Z* which has period T in w .  Then we 
must require for consistency as E -+ 0 that T/(2.rr/v) = O(1) (which includes the 
possibility TCT = o(1)). This is necessary in order that the periodic solution of 
the differential equation can be fitted into the required period of the transform. 
Now consider the different limiting cases given above. The period of the solution 
of a limiting equation will be some number, say M ,  since E does not appear in 
the limiting equation. Since w = it follows that the period in o is T = el-aM 
Now the condition Ta  = O( 1) yields 

El--% = O(1). (6.40) 

Thus for a < 1 no restriction on u results; however for a > 1 we have a = O(@-1). 
In particular, for the distinguished limit a = 2, b = 2 we obtain u = O(E). Re- 
calling that v = A ~ / E  this means that Alc must be chosen O($) or smaller; that is, 
the band of most dangerous wave-numbers which has width O(s) musk be covered 
by modes with wave-numbers separated by at  most a width O(e2). 

Turning from the details of the analysis, we point out that a fluid-mechanical 
situation which may give rise to  the slightly non-conservative dispersive waves 
which we have been discussing is the super-critical flow between counter-rotating 
circular cylinders. When the gap between the cylinders is small and the ratio of 
the outer to inner angular speeds is less than about - 1, Krueger, Gross & DiPrima 
(1966) have shown that the critical disturbance is zt non-axisymmetric mode. 
The corresponding growth rate is complex and the Landau constant is complex 
and has a positive real part. Non-linear analysis of disturbances which are periodic 
in both azimuthal and axial directions predicts a final state which takes the form 
of a spiral vortex travelling in both the axial and azimuthal directions (DiPrima & 
Grannick 1970). Of course our two-dimensional analysis does not directly apply 
here, but the fact that dependence on the third (azimuthal) variable must be 
periodic encourages the belief that extension of our analysis would lead to 
essentially the same kinematic behaviour as has just been described. 

Another fluid-mechanical problem of interest is the stability of an inviscid 
shear layer. Schade’s (1964) approximate calculations indicate that the Landau 
constant is real and positive for the tanh profile which models this flow. Since 
the growth rate is complex, our remarks concerning two-dimensional non-linear 
waves should apply directly. Also it appears from observation that wake in- 
stability gives rise to non-linear travelling waves (vortex street) but calculations 
of the Landau constant are not yet available. 

We conclude with several general comments. We note that the assumption 
Rep, = O(1) is essential in our analysis. If, on the contrary, RePC = O(e) then 
the neglected terms containing fifth powers of the A,’s may be of the same size 
as the non-linear terms which are retained in (3.11). Furthermore, as noted under 
(5.13), our demonstration of consistency requires that RePC be O(1). 

In  the BBnard and Taylor problems, /3, is real (positive) and O(1) but the 
possibility that this is not always the case is raised by numerical calculations of 
the Landau constant for plane Poiseuille flow (Reynolds & Potter 1967 and 
Pekeris & Shkoller 1967; also see Nguyen & Davey 1970). These calculations show 
that Rep(k)(B) changes sign near (kC, Bc).  Speaking generally, such a sign change 



736 R. C. DiPrima, W.  Eckhaus and L. A .  8egel 

may sharply restrict the range of Reynolds numbers for which our analysis 
could be expected to be uniformly valid in time. If RePC < 0,  as the above 
calculations show to be the case for plane Poiseuille flow, our analysis will be 
valid for a time but disturbances will eventually grow so large that the neglected 
quintic terms in the An’s will be important. 

As a second general comment, we observe that it is tempting to try to learn 
more about the infinite system of amplitude equations (3.11) by considering a 
truncated system. To do this for some fixed R > R, (fixed e), one would restrict 
consideration to the modes n = 0, i 1, ri: 2,  . . . , M €or some fixed positive integer 
M and replace the sum in (3.11) with a sum from - M to M .  It is essential that 
the integer M and the spacing Ak between successive modes be chosen so that 
not only all modes which grow according to linear theory, but also those which 
decay slowly, are included. 

It -would be interesting to  do some numerical experimentation with such 
equations to see, for example, whether wave-number selection appears to be 
taking place. It should be borne in mind, however, that we have demonstrated 
the persistence of energy concentration in the most dangerous modes only 
asymptotically as e -+ 0. For any fixed e, energy will probably gradually leak to 
modes having wave-numbers farther and farther from k,, so a truncation will 
presumably provide results to a given accuracy only for a limited period of time. 
The smaller e and Ak, the longer this time should be. 

One cannot help but be struck by the fundamental differences between the 
cases v = 0 (the Taylor problem and the BBnard problem) and the case v += 0 
(the plane Poiseuille problem). First there is the difference in the governing 
equations. For v = 0 we see from either (5.11)’ or (5.30) with vl = v2 = 0, that 
2 satisfies a diffusion type equation. Also the scaling 7 = e2t eliminates e from the 
equation and all terms are retained in the limit e -+ 0 with T and w fixed. On the 
other hand, for v $; 0,  the first derivative term aZ+law is retained in (5.30). 
Depending on the scaling of w and t different terms are lost in the limit e --f 0. 
In  particular for the distinguished limit e -+ 0 with 7 = €26 and u* = e2& fixed 
we obtain a wave type equation for the approximation 2:. 

We note that for v = 0 significant interaction between the most dangerous 
modes is obtained when Ak = O(e), while for v =k 0 one must take Ak = O(e2) 
to obtain the significant interactions (presence of 6 derivatives in the limiting 
equation). Since Ah = O(e2),  for example, includes the possibility Ak = o(e2), de- 
creasing Ak below a certain magnitude (an O(E)  magnitude when v = 0, an O(e2) 
magnitude when v + 0) yields no further significant interactions in the sense 
that the appropriate equations €or the transforms (5.11) and (5.30) continue to  
describe the leading effects of interaction. Thus we expect these equations t o  
be valid in the limit Ak + 0 wherein the ‘spectrum becomes continuous’. Of 
course the equations €or the transforms emerge if we begin by assuming that the 
disturbance has the form of a modulated spatial oscillation, as in equations 
(5.16) and (5.29). 

To summarize our analysis we have shown that, under certain widely met 
conditions, (i) initial energy concentrated in the most dangerous modes within 
O(e) of k, stays concentrated in these modes, (ii) a discrete (modal) analysis and 
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a continuous (slowly varying) approach to non-linear stability problems are 
in harmony, (iii) an analysis of the development of a rather general initial dis- 
turbance for a large class of stability problems reduces to the study of a single 
canonical partial differential equation which involves only two constants of the 
basic system, (iv) this equation represents appropriate generalizations of the 
classical Landau equation for the growth or decay of a spatially periodic dis- 
turbance, (v) if the real part of the Landau constant is positive then the lowest- 
order non-linear terms in the multi-modal problem are stabilizing, (vi) for the 
case Im,uh*) = 0 and Be real and positive there exist steady multi-modal solutions, 
though whether there are stable solutions remains open. 
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Appendix A 
Inthis appendix we sketch the derivation of the fundamental system of 

amplitude equations (3.1 1). Substitution in (3.3) of the expressions given in 
(3.6) for the ak yields the following. 
k: = 0:  

.. 
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= €2B,$C20(8k"8kk-p)  + € 2 0 ( S p 8 k + k n )  0(E4),  (A 4) 
where k" E I*. 

Consider the error estimates in (A 1)-(A 4) that involve the Sic's. Because of 
the rapid decay of the 4's for k in one of the sets J*, I*, Y* (as shown in $4) 
these terms are negligible as e -+ 0, and will not be written in the future. 

Once the family of Fourier components \ y k  for k~ J is known, then the non- 
homogeneous terms in (A l), (A 2) and (A 3) are known and we can solve for Yo, 
\yk for k €1 but k + 0, and Yk €or k~ Y .  Let us consider each set of equations 
starting with the fundamental family of Fourier components for k E J .  

k E J .  Prom the results of $ 2  we can write 

Substituting for Yk(r , t )  in (A 4) and taking the inner product with @g)(r) we 
find, omitting terms O(&), 

Recall that ~i") = O(e2) if k E J .  Because pik) is simple it follows that 78) = O( 1) 
for p 1. Hence, from (A 6), Akk) = O ( 8 )  for p > 1 and 

dAhk)/dt+pik)A(k) 0 = - e b o  2 ( k )  9 

so dlAik)I2/dt + 2 ~ i ~ ) l A 6 ~ ' 1 ~  = - ~ 2 [ A b ~ ) ~ i ~ ) + ~ i ~ ) b b ~ ) ] .  (A 7)  

(A 8) 

Further, it  then follows from (A 5) that 

Y k ( 7 ,  t )  = Aik'(t) +bk'(7) + O(e2) ( k  E J). 

We can now exploit this result to  simplify the equations €or the forced terms \yk. 

We consider in turn wave-numbers k such that k = 0, k E I but k + 0 and k E Y .  
k = 0. Substituting for Ylc(7, t )  from (A 8) in (A 1) and rearranging terms we 

obtain 

Lgo--so Yo = s (Abk"(t)(2fk'(7)+0(€2), (A 9) ( :t ) W E J  

N 

1 =1 
where f v ( T )  = x [ (p# @'). K&!) Q&! +bk') + (Py +Lp) .l?i?) Q$ #')I (A 10) 

Substituting for Yo from (A 11) in (A 9) and taking the inner product with 
@)(q) and omitting terms O(e2), we obtain 
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where CE), the initial value of Ag)(t), is necessarily O(1). Integrating by parts, 
and making use of the fact that ~ZlA&~’)( t )I~/dt  = O($) for k’ E J from (A 7),t we 
find 

Consequently, from (A 11) 

where 

Once the Ai’”’)(t) are known, (A 15) gives the distortion of the mean motion. 
Alternatively, and more simply from a computational point of view, we can 

look for a solution of (A 9) of the form (A15). Making use of the fact that 
d)Abk’)(t)/2/dt = O ( k )  we obtain the equation 

%gk’ = f k f ,  (A 17) 

subject to appropriate homogeneous boundary conditions. 
ke I, k + 0: Proceeding in the same manner as for the case k = 0 we find that 

Y k ( 7 ,  t )  = .&’“’)(t) A&”””(t) g , k + y ( q )  + O(E2) (k €1, k ?= O ) ,  (A 18) 
k‘E J 

where 

Here vhk’) = I m  (pik‘)), and 

{Zk - i ( v y  - v&k+‘”‘)) s k } gV. k+k‘ = f k t ,  k+W* (A 19) 

Appropriate homogeneous boundary conditions on g , k + ,  are specified a t  q = 0 
and? = 1. 

k E Y :  Again proceeding in the same manner as for the case k = 0 we find that 

and 

and appropriate homogeneous boundary conditions on &, k - v  are specified a t  
q = O a n d q = l .  

It is clear from these results that  for k E I ,  Y ,  Y k ( q , t )  = O(1) if Abk)(t) = O(1) 
for k E J .  

Now that Yo, Y k  for k E I but k =t= 0, and Y k  for k E Y are known in terms of 
Ahk)(t) it is possible to  ( a )  compute B k  given in (A 4), ( 6 )  compute bbk) given in 

t Though asymptotically correct as E --f 0, caution must be used in practice for the case 
of plane Poiseuille flow since the neglected term is also multiplied by the Reynolds number 
which is large. This was pointed out to us in a private communication by A. Davey; see 
Nguyen & Davey (1970). 

47-2 



N 

z=1 

N 

E=l 

c@) = 2 ((Pi') go . Kf?)  Qf; +hkc), &,,c)), 

c(3) = C ( (P& &".' . Kp)) Qy go, &")), 

c(4) = cm, 

N 
d5) = 2 ((jjSg! q b k c )  KfLc) Qt),, g, + (Pit, g2 .iQ) 621. &C), $bkc)) ,  

) (A 25)  

The functions 
The saving feature of the calculation is that we need only evaluate the co- 

efficients 0 2 ) )  . . ., C(s) in the limit e -+ 0. This is because the term on the right- 
hand side of (A 7)  has a factor e2; hence terms O(E)  in bhk) will yield terms O(e3) 
in (A 7),  and these terms can be neglected. The limits of CC1), 02), . . . , G5) as 6 + 0 
are evaluated in appendix B; they are denoted by dl), . . . , d5) respectively. As 
discussed a t  the beginning of $3, the assumption ~ k , , - - k , ~  = O(e2) means that 
k, + k, as e -+ 0. This means that in evaluating the limits as e + 0, if k' E J then 
k' + kc, if k' E I then k' -f 0, and if k' E Y then k' -f 21%~. The constants dl), . . ., d5) 
are given by 

02), . . ., C(9 are given in appendix B. 
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(A 6), and hence know the terms bLk) and 6bk) in (A 7) for ALk)(t), (c) solve (A 7 )  
for the unknown function lALk)(t)l. The calculation of B, is a formidable algebraic 
task. The result of this calculation is that bik) = [BG, &Ak)) is given bv 
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I n  terms of the notation of (3.10a), (A 24) reduces to 

b6 n) - - c(l)An 2 ] A , 1 2 + ~ ( ~ )  An,  2 A m A m + p + ~ ( 3 )  
P21 p < n  

A ,  C BmAn-p+m 
P E J  P S J  meJ peJ meJ 

C An+p C Am‘p+m = c Ap c JmAm-p+n, 
PE J m E J  p s J  maJ 
p> 1 p>n 

meJ peJ  pcJ  meJ 
c A m  c ApAp+n-m = c Ap c JmAm+m-p 

p i n  

+An C IAmI2+ C Ap c BmAn+m-p. 
me J p c J  meJ 

+ d4) C A,, C Amxp+,+ d5) C Jm C A ,  Ap+nm+ O(s). (A 2 8 )  
PCJ me J meJ p e J  
p a 1  

) (A29) 

where ,3hk) = b(ko+ngc) 0 = b(n) 0 for k E J .  

and d5) in (A 5) can be written as follows: 
It is possible to simplify (A 28) by noting that the sums multiplying c@), c(*) 

Finally, substituting for bhk) in (3.9), we obtain (3.11). 

Appendix B 
The functions C(l), . . . , C(5) are given by 

N 

1 =1 
C(’)(k, k’) = C ((@ & . KE)) Qg) +hk) + (Pfc) +hk). @I) Qg’ &, & j k ) ) ,  (B 1) 

where k E J and k’ E J and g, is the solution of (A 17) .  
N 

z = l  
C(2)(k,k’, k”) = I; ((PE!gv,F+v . ~ ~ ? . k , ) Q E ~ ~ , + h k - , , ’ , ~ 6 k ) ) ,  

G(”(k, k‘, k”) = C ((Pg! +hk”’ . K g ? k t )  Qfc?.,. gk”,k-F+k”,  Bi”), 

(B 2) 

where k~ J, k’ €1, k” E J and &”,,,+y is the solution of (A 19). 
N 

z=1 
(B 3) 

where k E  J, k’ E J ,  k” E J and &“,,+k“ is the solution of (A19). 
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N 

1=1 
C(4)(k, k', k") = ((pg? &", k,+k". K&) &&k, 

+ (P&k! +hk+k') .Kf!) Q t ! z k n , k ' + k " ,  $hk)) ,  (B 4) 

where k E J ,  k' E I ,  k" E J and &",V+k" is the solution of (A 19). 

N 

z = l  
(?(5)(k, k', k") = ((PIE! t$hp). K&!,,) Qf!,, &w,k+W-k" 

-k (PfLk, gk" ,  k+k'-k" .R$) at! Fhk), $hk)) ,  (B 5 )  

where k E J ,  k' E J ,  k" E J and &",k+K-p is the solution of (A 22). 
To evaluate the functions C(l), ..., CX5) first recall that as e -+ 0 we have if 

k'E J then k' -+ k,, if L' €1 then k' 3 0, and if k' E J then k' -+ 2kc. Consider (B 1). 
Since k' E J and k E J it follows that 

as 8 -+ 0, where from (A 17)  

and from (A 10) 
-%Ogk, = 

For convenience we denote g k ,  by go and fk, by fo. Thus c(l) = lim C(l)(k,  k') is 

given by (B 1 )  with +hk), $kk),  and g,, replaced by &jkc), $hkc), and go. The results 
are recorded in (A 25)-(A 27). 

E+O 

Next consider (B 2). Since k E J ,  k' E I ,  k" E J it follows that 

fh, k'+k" --f g k c ,  kc' (B 9) +&k-k') --f +&kc), $hk) + $hkc), 

as E --f 0, where from (A 19) with k replaced by k' and k' replaced by k" 

2O g k c ,  k,  = fk,, kc? 
and from (A 20)  

N 

z=1 
fk,,k,(T) = C [(F'f:  &hkc) * Kti) Q!: +hkc) + (Pi!! +hkc'. Kfb) Qti +&kc']. (B 11)  

Comparison of (B 11) and (B 8) shows that 

fhc,kc(T) = fkc(?l) = ' O ( ~ ) P  

and hence from (B 10) and (B 7) it follows that 

g k , k , ( T )  = g k c ( q )  = gO(?). 

The result for d2) = lim C@)(k, k', k") is recorded in (A 25). The e d u a t i o n  of c(3) 

and d4) is similar; the results are given in (A 25) .  
E+O 

Finally consider (B 5 ) .  Since k E J ,  k' E J and k" E J i t  follows that 

dh"" --f #Ikc), &Ik) --f dhkc), gk", kfk'-k" -?? g ,  k,i (B 12) 
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as E -+ 0, where from (A 22) with k replaced by k + k’ and k‘ replaced by k“ 

(22kc + i2vhkc) Hekc)  g k ,  kc = fkc ,  k,, 
and from (A 23) 

For convenience we have denoted the g , k c  of (B 13) and fkc ,kc  of (B 14) by g, 
and f ,  respectively. Thus d5) = lim U5)(k ,  k’, k”) is given by (B 5) with +ik‘), +ik) 
and g,,k,,-k. replaced by +ikc) ,  + ikc )  and g, respectively. The results are re- 
corded in (A 25)-(A 27). 
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